3.322 \(\int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=130 \[ \frac {2 (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}+\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \]

[Out]

2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b
*cos(d*x+c))^(1/2)/b/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2
*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/b/d/(a+b*cos(d*x+c))^
(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2752, 2663, 2661, 2655, 2653} \[ \frac {2 (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}+\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(b*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)])
+ (2*(A*b - a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(b*d*Sqrt[a + b*Cos
[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx &=\frac {B \int \sqrt {a+b \cos (c+d x)} \, dx}{b}+\frac {(A b-a B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{b}\\ &=\frac {\left (B \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left ((A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{b \sqrt {a+b \cos (c+d x)}}\\ &=\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.29, size = 93, normalized size = 0.72 \[ \frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left ((A b-a B) F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+B (a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )\right )}{b d \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*((a + b)*B*EllipticE[(c + d*x)/2, (2*b)/(a + b)] + (A*b - a*B)*EllipticF
[(c + d*x)/2, (2*b)/(a + b)]))/(b*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 1.22, size = 249, normalized size = 1.92 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a -b}{a -b}}\, \left (A b \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a +B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b \right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/
2*c)^2*b+a-b)/(a-b))^(1/2)*(A*b*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-B*EllipticF(cos(1/2*d*x+1/2*c
),(-2*b/(a-b))^(1/2))*a+B*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-B*EllipticE(cos(1/2*d*x+1/2*c),(-
2*b/(a-b))^(1/2))*b)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b/sin(1/2*d*x+1/2*c)/(-2*sin
(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [B]  time = 0.89, size = 135, normalized size = 1.04 \[ \frac {2\,A\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}}{d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}+\frac {2\,B\,\left (\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (a+b\right )-a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\right )\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}}{b\,d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(a + b*cos(c + d*x))^(1/2),x)

[Out]

(2*A*ellipticF(c/2 + (d*x)/2, (2*b)/(a + b))*((a + b*cos(c + d*x))/(a + b))^(1/2))/(d*(a + b*cos(c + d*x))^(1/
2)) + (2*B*(ellipticE(c/2 + (d*x)/2, (2*b)/(a + b))*(a + b) - a*ellipticF(c/2 + (d*x)/2, (2*b)/(a + b)))*((a +
 b*cos(c + d*x))/(a + b))^(1/2))/(b*d*(a + b*cos(c + d*x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________